Temperature-Dependent Emission Kinetics of Colloidal Semiconductor Nanoplatelets Strongly Modified by Stacking.

نویسندگان

  • Onur Erdem
  • Murat Olutas
  • Burak Guzelturk
  • Yusuf Kelestemur
  • Hilmi Volkan Demir
چکیده

We systematically studied temperature-dependent emission kinetics in solid films of solution-processed CdSe nanoplatelets (NPLs) that are either intentionally stacked or nonstacked. We observed that the steady-state photoluminescence (PL) intensity of nonstacked NPLs considerably increases with decreasing temperature, whereas there is only a slight increase in stacked NPLs. Furthermore, PL decay time of the stacked NPL ensemble is comparatively much shorter than that of the nonstacked NPLs, and this result is consistent at all temperatures. To account for these observations, we developed a probabilistic model that describes excitonic processes in a stack using Markov chains, and we found excellent agreement between the model and experimental results. These findings develop the insight that the competition between the radiative channels and energy transfer-assisted hole trapping leads to weakly temperature-dependent PL intensity in the case of the stacked NPL ensembles as compared to the nonstacked NPLs lacking strong energy transfer. This study shows that it is essential to account for the effect of NPL stacking to understand their resulting PL emission properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colloidal nanoplatelets with two-dimensional electronic structure.

The syntheses of strongly anisotropic nanocrystals with one dimension much smaller than the two others, such as nanoplatelets, are still greatly underdeveloped. Here, we demonstrate the formation of atomically flat quasi-two-dimensional colloidal CdSe, CdS and CdTe nanoplatelets with well-defined thicknesses ranging from 4 to 11 monolayers. These nanoplatelets have the electronic properties of ...

متن کامل

Continuously Tunable Emission in Inverted Type-I CdS/ CdSe Core/Crown Semiconductor Nanoplatelets

nanoribbons, [ 10 ] and most recently nanoplatelets (NPLs) [ 11 ] have been successfully synthesized. In these solution-processed quantum structures, an additional epitaxial growth of semiconductor shell around the starting semiconductor core leads to various architectures of nanocrystal heterostructures. By doing so, physical properties can be elegantly modifi ed with precisely controlling dis...

متن کامل

Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution

Although multiphoton-pumped lasing from a solution of chromophores is important in the emerging fields of nonlinear optofluidics and bio-photonics, conventionally used organic dyes are often rendered unsuitable because of relatively small multiphoton absorption cross-sections and low photostability. Here, we demonstrate highly photostable, ultralow-threshold multiphoton-pumped biexcitonic lasin...

متن کامل

Stacking in colloidal nanoplatelets: tuning excitonic properties.

Colloidal semiconductor quantum wells, also commonly known as nanoplatelets (NPLs), have arisen among the most promising materials for light generation and harvesting applications. Recently, NPLs have been found to assemble in stacks. However, their emerging characteristics essential to these applications have not been previously controlled or understood. In this report, we systematically inves...

متن کامل

Low-threshold stimulated emission using colloidal quantum wells.

The use of colloidal semiconductor nanocrystals for optical amplification and lasing has been limited by the need for high input power densities. Here we show that colloidal nanoplatelets produce amplified spontaneous emission with thresholds as low as 6 μJ/cm(2) and gain as high as 600 cm(-1), both a significant improvement over colloidal nanocrystals; in addition, gain saturation occurs at pu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2016